
您似乎是从中国境内访问我们的网站的。请导航至我们的优化版网站：amazonaws-china.com。

Create a Free

AWS Account

Search

Search

Posts by Product

Amazon Aurora

AWS Database

Migration Service

(DMS)

Amazon

DynamoDB

Amazon EC2

Amazon

ElastiCache

Amazon

Elasticsearch

Service

AWS IOT

Amazon Kinesis

AWS Lambda

Amazon RDS for

MySQL

Amazon RDS for

Oracle

AWS Database Blog

Amazon Aurora Under the Hood:
Quorum Membership

by Anurag Gupta | on 23 AUG 2017 | in Amazon Aurora, Aurora, Database | Permalink |

Comments | Share

Anurag Gupta runs a number of AWS database services, including Amazon
Aurora, which he helped design. In this under the hood series, Anurag
discusses the design considerations and technology underpinning Aurora.

This post is the last in a four-part series discussing how Amazon Aurora uses

quorums. In the first post, I described the benefits of quorums and the

minimum number of members that are needed in the face of correlated

failures. In the second post, I discussed how to use logging, cached state, and

non-destructive writes to avoid network amplification for reads and writes. In

the third post, I talked about how to use more advanced quorum models to

reduce the costs of replication. In this last post about quorums, I describe how

Amazon Aurora avoids problems when managing quorum membership

changes.

Techniques for managing quorum membership changes

Machines fail. When one of the members of a quorum fails, we need to repair

the quorum by replacing the node. This can be a complex decision. The other

members of a quorum can’t tell if the impaired member is encountering a

latency blip, experiencing a short-term availability loss for a restart, or is down

forever. Network partitions can cause multiple groups of members to try

simultaneously to fence each other off.

If you’re managing large amounts of persistent state per node, the re-

replication of state to repair a quorum can take a long time. In such cases, you

might want to be conservative about initiating a repair in case the impaired

member is able to return. You can instead optimize for repair time by

segmenting state across many nodes. But this then increases the likelihood

that you will see failures.

In Aurora, we segment a database volume into 10 GB chunks, using six copies

spread across three Availability Zones (AZs). For a current maximum database

https://aws.amazon.com/optin/?country=CN&token=95a2e226-c14c-46ae-bd65-4d6eceb8728e
http://aws.amazon.com/free/
https://aws.amazon.com/blogs/database/category/aurora/
https://aws.amazon.com/blogs/database/category/dms/
https://aws.amazon.com/blogs/database/category/dynamodb/
https://aws.amazon.com/blogs/database/category/ec2/
https://aws.amazon.com/blogs/database/category/elasticache/
https://aws.amazon.com/blogs/database/category/elasticsearch/
https://aws.amazon.com/blogs/database/category/iot/
https://aws.amazon.com/blogs/database/category/kinesis/
https://aws.amazon.com/blogs/database/category/lambda/
https://aws.amazon.com/blogs/database/category/rds-mysql/
https://aws.amazon.com/blogs/database/category/rds-oracle/
https://aws.amazon.com/blogs/database/
https://aws.amazon.com/blogs/database/category/database/amazon-aurora/
https://aws.amazon.com/blogs/database/category/aurora/
https://aws.amazon.com/blogs/database/category/database/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-membership/
https://commenting.awsblogs.com/embed.html?disqus_shortname=aws-database-blog&disqus_identifier=1544&disqus_title=Amazon+Aurora+Under+the+Hood%3A+Quorum+Membership&disqus_url=https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-membership/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-and-correlated-failure/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-quorum-reads-and-mutating-state/
https://aws.amazon.com/blogs/database/amazon-aurora-under-the-hood-reducing-costs-using-quorum-sets/
https://aws.amazon.com/?nc2=h_lg

Amazon RDS for

PostgreSQL

Amazon RDS for

SQL Server

AWS Schema

Conversion Tool

(SCT)

RSS Feed

 Subscribe to this

blog's feed

Recent Posts

Introducing

Amazon S3 and

Microsoft Azure

SQL Database

Connectors in AWS

Database Migration

Service

Viewing Amazon

Elasticsearch

Service Slow Logs

Replicating Amazon

EC2 or On-Premises

SQL Server to

Amazon RDS for

SQL Server

Querying on

Multiple Attributes

in Amazon

DynamoDB

Automating Cross-

Region and Cross-

Account Snapshot

Copies with the

Snapshot Tool for

Amazon Aurora

Automating SQL

Caching for Amazon

size of 64 TB, that’s 6,400 protection groups or 38,400 segments. Failures can

be common at this scale. A common way of managing membership changes is

by using a lease for a period of time and a consensus protocol such as Paxos to

ensure membership at each lease. But Paxos is a heavyweight protocol, and

optimized versions result in stalls on large numbers of failures.

Using quorum sets to handle failures

Aurora instead uses quorum sets and database techniques such as logging,

rollback, and commit to manage membership changes. Let’s consider an

individual protection group with the six segments A, B, C, D, E, and F. In this

case, the write quorum is any four members out of this set of six, and the read

quorum is any three members. As I discussed in my last post, Aurora quorums

are more complex than this, but let’s keep it simple for now.

Each read and write in Aurora uses a membership epoch, a value that

monotonically increases with each membership change. Reads and writes that

are at an epoch that is older than the current membership epoch are rejected.

In such cases, the caller needs to refresh its understanding of the quorum

membership. This is conceptually similar to the notion of log sequence

numbers (LSNs) in a redo log. The epoch number and associated change

record provide an ordered sequence of changes to membership. Changes to

the membership epoch require meeting write quorum just as data writes do.

Reads of current membership require meeting read quorum just as data reads

do.

Let’s continue with our protection group of ABCDEF. Imagine that we think

segment F might have failed, and we need to introduce the new segment G.

We don’t want to fence off F—it may be encountering a temporary failure and

might come back quickly. Or it may be processing requests, but for some

reason, it’s not observable to us. We also don’t want to wait to see whether F

comes back—that just adds time during which the quorum is impaired and a

second fault can occur.

We use quorum sets to solve this. We don’t do a membership change directly

from ABCDEF to ABCDEG. Instead, we increment the membership epoch and

move the quorum set to ABCDEF AND ABCDEG. A write must now successfully

acknowledge from four out of the six copies in ABCDEF and also acknowledge

from four out of the six copies in ABCDEG. Any four members of ABCDE satisfy

both write quorums. The read/repair quorum operates identically, requiring

any three acknowledgements from ABCDEF and any three from ABCDEG.

Again, any three from ABCDE satisfy both.

When the data has been fully hydrated onto node G, and we decide that we

want to fence F off, we again do a membership epoch change and change the

quorum set to ABCDEG. The use of an epoch makes this an atomic operation,

just as a commit LSN does for redo processing. This epoch change needs to

satisfy the current write quorum before it succeeds, requiring

acknowledgment from four of six in ABCDEF and four of six in ABCDEG, just

like any other update. If node F were to become visible again before G filled

itself in, we could also just as easily roll back our change and make a

https://aws.amazon.com/blogs/database/category/rds-postgresql/
https://aws.amazon.com/blogs/database/category/rds-sql-server/
https://aws.amazon.com/blogs/database/category/schema-conversion-tool-sct/
https://aws.amazon.com/blogs/database/feed/
https://aws.amazon.com/blogs/database/introducing-amazon-s3-and-microsoft-azure-sql-database-connectors-in-aws-database-migration-service/
https://aws.amazon.com/blogs/database/viewing-amazon-elasticsearch-service-slow-logs/
https://aws.amazon.com/blogs/database/replicating-amazon-ec2-or-on-premises-sql-server-to-amazon-rds-for-sql-server/
https://aws.amazon.com/blogs/database/querying-on-multiple-attributes-in-amazon-dynamodb/
https://aws.amazon.com/blogs/database/%C2%AD%C2%AD%C2%ADautomating-cross-region-cross-account-snapshot-copies-with-the-snapshot-tool-for-amazon-aurora/
https://aws.amazon.com/blogs/database/automating-sql-caching-for-amazon-elasticache-and-amazon-rds/
https://aws.amazon.com/?nc2=h_lg

ElastiCache and

Amazon RDS

Migrating a SQL

Server Database to

a MySQL-

Compatible

Database Engine

Using Amazon

Redshift for Fast

Analytical Reports

Testing Amazon

RDS for Oracle:

Plotting Latency

and IOPS for OLTP

I/O Pattern

Get Started with

Amazon

Elasticsearch

Service: Filter

Aggregations in

Kibana

Useful
Documentation Links

Cloud Databases

with AWS

Amazon RDS

AWS Database

Migration Service

Amazon

DynamoDB

Amazon

ElastiCache

Amazon Redshift

AWS Blogs

AWS Blog

AWS Big Data

membership epoch change to return to ABCDEF. We don’t discard any state or
segments until we are back to a fully healthy quorum.

Note that reads and writes to this quorum happen during a membership

change just as they would before or after the change. The change to quorum

membership does not block reads or writes. At most, it causes callers with

stale membership information to refresh their state and reissue the request to

the correct quorum set. And quorum membership changes are non-blocking

for both read and write operations.

Of course, any one of ABCDEG might also fail while we’re in the process of

repairing the quorum by fully hydrating G as a replacement for F. Many

membership change protocols do not robustly handle faults during

membership change. With quorum sets and epochs, it’s easy. Let’s consider

the case where E also fails and is to be replaced by H. We just need to move

to a quorum of ABCDEF AND ABCDEG AND ABCDFH AND ABCDGH. As with

the single fault, a write to ABCD satisfies all of these. Membership changes

have the same tolerance for failures as reads and writes themselves.

Summary

Using quorum sets for membership changes makes it possible for Aurora to

use small segments. This improves durability by reducing Mean Time To Repair

(MTTR) and our window of vulnerability to multiple faults. It also reduces

costs for our customers. Aurora volumes automatically grow as needed, and

small segments allow them to grow in small increments. The use of quorum

sets ensures that reads and writes can continue even while membership

changes are in-flight.

Making membership decisions reversible allows us to aggressively make

changes to quorums–we can always revert the change if the impaired member

returns. Some other systems have periodic stalls as leases expire and quorum

membership needs to be re-established. Aurora neither pays the durability

penalty of delaying the membership change operation until the lease expires,

nor does it pay the performance penalty of delaying reads, writes, or commits

while quorum membership is being established.

Aurora has made advances in a number of different areas—the approach

we’ve taken to integrating databases and distributed systems is core to many

of these. I hope you’ve found this set of posts about how we use quorums and

avoid some of their pitfalls to be interesting and perhaps even helpful as you

think about how to design your own applications and systems. The techniques

we used are broadly applicable, although they do have implications across

numerous elements of the stack.

If you have other questions or topics you’d like me to cover, leave a comment

here or ping us at aurora-pm@amazon.com.

https://aws.amazon.com/blogs/database/automating-sql-caching-for-amazon-elasticache-and-amazon-rds/
https://aws.amazon.com/blogs/database/migrating-a-sql-server-database-to-a-mysql-compatible-database-engine/
https://aws.amazon.com/blogs/database/using-amazon-redshift-for-fast-analytical-reports/
https://aws.amazon.com/blogs/database/testing-amazon-rds-for-oracle-plotting-latency-and-iops-for-oltp-io-pattern/
https://aws.amazon.com/blogs/database/get-started-with-amazon-elasticsearch-service-filter-aggregations-in-kibana/
https://aws.amazon.com/products/databases/
https://aws.amazon.com/rds/
https://aws.amazon.com/dms/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/redshift/
http://aws.amazon.com/blogs/aws/
https://blogs.aws.amazon.com/bigdata/
mailto:aurora-pm@amazon.com
https://aws.amazon.com/?nc2=h_lg

